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Ballistic localization in quasi-one-dimensional waveguides with rough surfaces

F. M. Izrailev, J. A. Méndez-Bermu´dez, and G. A. Luna-Acosta
Instituto de Fı´sica, Universidad Auto´noma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico

~Received 11 May 2003; published 11 December 2003!

Structure of eigenstates in a periodic quasi-one-dimensional waveguide with a rough surface is studied both
analytically and numerically. We have found a large number of ‘‘regular’’ eigenstates for any high energy. They
result in a very slow convergence to the classical limit in which the eigenstates are expected to be completely
ergodic. As a consequence, localization properties of eigenstates originated from unperturbed transverse chan-
nels with low indexes are strongly localized~delocalized! in the momentum~coordinate! representation. These
eigenstates were found to have a quite unexpected form that manifests a kind of ‘‘repulsion’’ from the rough
surface. Our results indicate that standard statistical approaches for ballistic localization in such waveguides
seem to be inappropriate.
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I. INTRODUCTION

In the past decade much attention has been paid to st
tical properties of eigenstates of closed disordered syste
As a result, till date practically everything is known fo
quasi-one-dimensional~quasi-1D! systems with ‘‘bulk disor-
der.’’ The success is mainly related to the developments
the non-linears model ~see, e.g., Ref.@1# and references
therein!. One of the most important results is that the sta
tical properties of such systems are essentially determine
one characteristic length only, known as the localizat
length of eigenstates. This fact is entirely due to a stro
mixing between transverse channels resulting frombulk scat-
tering and leading to a diffusive character of transport.

A much more difficult situation was found to occur for th
models withsurface scatteringwhen the disorder is due to
surface roughness. In quasi-1D geometry such models
closely related to optical/microwave waveguides and h
many physical applications in different fields@2#. The main
problem in the rigorous treatment of this kind of systems
in the ballistic character of the scattering which has wea
statistical properties in comparison with diffusive scatterin
Progress in this direction is related to recent development
the ‘‘ballistic sigma model,’’ however, the problem is still fa
from being solved~see discussion and references in Ref.@3#!.

As was recently shown in a number of numerical stud
@4,5#, the transport in quasi-1D waveguides with rough s
faces is highly nonisotropic in channel space. Specifica
the transport through such waveguides strongly depend
the incident angle of incoming wave. In particular, the tra
mission coefficient smoothly decreases with an increase
the angle, since characteristic lengths for backscattering
different for different channels@5#.

To understand generic features of surface disorde
quasi-1D systems, in this paper we perform a detailed st
of the structure of eigenstates of a 2D quantum billiard~or
waveguide!.

II. THE MODEL

We consider billiards which are periodic in the longitud
nal coordinatex, and with Dirichlet boundary conditions o
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the lower y50 and uppery5d1aj(x) surfaces withj(x
1b)5j(x) and ^j(x)&50. Here the angular brackets stan
for the average over one periodb @or, in the case of a random
profile, over different realizations ofj(x)].

Our main interest is in the study of the structure of eige
states of this billiard which depends on their energy a
model parameters. For this we use the technique that tr
forms the HamiltonianĤ5(1/2me)( P̂x

21 P̂y
2) for a free par-

ticle inside the billiard with the above boundaries to a n
Hamiltonian which incorporates surface scattering effe
into effective interaction potential. This can be achieved
the transformation to new canonical coordinates,u5x, v
5y/@11ej(x)# with e5a/d. As a result, the boundary con
ditions for new wave function are trivial:F(u,v)50 at v
50 andv5d ~see details in Ref.@6#!.

In the new variables the Hamiltonian gets@6#,

Ĥ52
\2

2me
S ]2

]u2
1h1

]2

]v2
1h2

]2

]u]v
1h3

]

]v D , ~1!

where

h15
11e2v2ju

2

~11ej!2
, h25

22evju

11ej
,

h35
2evjuu

11ej
1

2ve2ju
2

~11ej!2
, ~2!

andju5]j/]u, juu5]2j/]u2.
One can write the Hamiltonian in the following form,

Ĥ5Ĥ01V̂~u,v,P̂u ,P̂v!, Ĥ05
1

2me
~ P̂u

21 P̂v
2!, ~3!

where P̂u and P̂v are the new canonical momenta. In th
way, the ‘‘unperturbed’’ HamiltonianĤ0 describes free mo-
tion of two ‘‘particles’’ inside a billiard with flat boundaries
y50, y5d, andV̂ stands for an effective ‘‘interaction’’ be
tween the ‘‘particles.’’ Such a representation turns out to
very convenient for the study of chaotic properties of o
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model, since one can use the tools and concepts develop
the theory of interacting particles~see Ref.@7#, and refer-
ences therein!.

This model has been thoroughly studied in Refs.@6,8–12#
for the specific casej(x)5cos(2px/b). The main interest
was in the properties of energy spectrum@6,10#, and in the
quantum-classical correspondence for the shape of ei
functions~SEF! and local density of states~LDOS! @8,11#. In
particular, it was shown that for highly excited states t
global properties of the SEF and LDOS in the quant
model ~3! are similar to those described by the equations
motion for a classical particle moving inside the billiard. O
the other hand, quite strong quantum effects have been
vealed for individual eigenstates in a deep semiclassica
gion @11#.

Below we address the case of a rough surface

j~x!5 (
k51

NT

AkcosS 2pkx

b D , ~4!

focusing on the properties of eigenstates. The surface is m
eled by a large sum of harmonics with randomly distribu
amplitudesAk . With an increase ofNT the degree of com-
plexity of j(x) increases, and for a largeNT*100 the sur-
face can be treated as the random one.

Since the Hamiltonian~3! is periodic inu5x, the eigen-
states are Bloch states and the solution of the Schro¨dinger
equation can be written in the formcE(u,v)
5exp(ixu) cx(u,v), with cx(u12p/b,v)5cx(u,v). Here
the Bloch wave vectorx(E) is in the first Brillouin band
(2p/b<x<p/b). By expandingcE(u,v) in the basis of
Ĥ0, theath eigenstate of energyEa(x) can be written as

ca~u,v;x!5 (
m51

`

(
n52`

`

Cmn
a ~x!fmn

x ~u,v !, ~5!

where

fmn
x ~u,v !5

1

p1/2g1/4
ei (x12pn/b)usinS mpv

d D . ~6!

The factorg5@11ej(u)#2 arises from the orthonormality
condition in the curvilinear coordinates (u,v) ~see details in
Ref. @6#!.

In the ‘‘unperturbed’’ basis defined byĤ0, the matrix el-
ements of the ‘‘interaction’’V̂(u,v,P̂u ,P̂v) can be written
explicitly for any profilej(x) @11#. This fact is very useful in
the study of the dependence of the properties of eigens
on the form of profile.

The eigenvalues ofĤ0 are given by the expression

En,m
(0) ~x!5

\2

2me
F S x1

2p

b
nD 2

1S mp

d D 2G . ~7!

In numerical simulations we have to make a cutoff f
the values ofm andn in the expansion~5!. Our main results
refer to the ranges 1<m<Mmax and unu<Nmax with Nmax
532, Mmax562 for which the total size of the Hamiltonia
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matrix is L5(2Nmax11)Mmax54030. Since the statistica
properties of eigenstates do not depend on a specific valu
the Bloch indexx inside the band@10#, we fix it to x
50.1p/b. Note that due to the so-called antiunitary symm
try @13# the level spacing statistics for this model corr
sponds to that of a Gaussian orthogonal ensemble~GOE!
~see also examples in Ref.@14#!.

One natural representation of the Hamiltonian mat
Hl ,l 8(x)5^ l uĤu l 8&x is the so-called ‘‘channel represent
tion’’ for which one fixes the values ofn starting from the
lowest one,n52Nmax, with the run overm for eachn. In
this way the matrix has a block structure that manifests
culiarities of the interaction between different chann
specified by the indexm. For our purpose, however, to ana
lyze the properties of the eigenfunctions it is more con
nient to use the ‘‘energy representation’’ according to wh
the unperturbed basis is ordered in increasing energyEl 11

0

>El
0 @11#.

In what follows we mainly discuss periodic billiards wit
a weak roughnesse5a/d!1. However, all matrix elements
of the Hamiltonian are computed according to exact anal
cal expressions. This is important because the contributio
the ‘‘gradient’’ terms~which depend onju , juu) is strong for
NT@1 and should be treated nonperturbatively.

III. ANALYSIS AND DISCUSSION

In order to characterize quantitatively the structure
eigenfunctions we compute theentropy localization length
l H , given by the expression,

l H
215exp$2~H2HGOE!%'2.08 exp$2H%. ~8!

HereH52( l 51
L wl

aln wl
a stands for the Shannon entropy

an eigenstate in a given basis, andHGOE is the entropy of a
completely chaotic state characterized by Gaussian fluc
tions of the componentsCl

a with the variancê wl
a&5uCl

au2

51/L @14#. Note that the value ofl H is proportional to the
localization lengthl ipr , defined via theinverse participation
ratio l ipr53P 21 with P5( l 51

L (wl
a)2 @14#. Both quantities

give an estimate of the effective number of components
exact~perturbed! eigenstates.

In Fig. 1~a! the value ofl H is plotted versus the indexa
for exact eigenstates ordered in energyEa. This typical de-
pendence ofl H on a is quite instructive. As one can antic
pate, the number of principal components in the eigenst
increases, in average, with energy. On the other hand, for
large energyEa there are many eigenstates that have sm
values ofl H . For understanding the origin of these strong
localizedeigenstates~in the unperturbed basisu l &), it is con-
venient to consider the so-calledindividual LDOS @8#. This
quantity corresponds to the representation of an unpertu
stateu l & in the basis of exact statesua&. Using the definition
~8! with H52(a51

L wl
aln wl

a where the sum now runs overa
for a specific value ofl, one can characterize how man
exact states contain specific unperturbed stateu l &.

The data of Fig. 1~b! show that there is a large number
unperturbed states that seem to be close to the exact
~with l H'1). The important point is that these states app
1-2
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in a regular way as a function ofl. The analysis shows tha
exact eigenstatesua& with smallest values ofl H are originated
from the unperturbed states withm51, see Eq.~7!. The data
of Fig. 1~a! manifest that localized eigenstatesua& with small
values ofl H can be classified by groups that are charac
ized by the values ofm51,2,3 . . . ~for small m) of those
unperturbed statesu l & to which they are ‘‘close.’’

Two examples of such eigenstates are given in Fig. 2
the coordinate representation (x,y). It is quite unexpected
that these eigenstates are very different from the unpertu
ones even though they are quite close in energy represe
tion. Figure 2~a! shows that the rough boundary ‘‘pushe
the probabilityuca(x,y)u2 away from it, differing from the
unperturbed mode withm51 whose maximum is at the cen
ter y5d/2. Similar repulsion occurs form52, see Fig. 2~b!.

FIG. 1. Localization measurel H for a rough surface withNT

5100 for e50.06 andd5b; ~a! for exact eigenstatesua&, and ~b!
for individual LDOS u l &.

FIG. 2. Examples of exact eigenstates that are strongly local
in energy representation;~a! a5968 (m51) and ~b! a5976 (m
52). The probabilityuca(x,y)u2 is plotted for the parameters o
Fig. 1 ~dark regions correspond to high probability!. Broken hori-
zontal curves show upper surface profiles.
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Below we give the explanation of this phenomenon by m
ing use of the Hamiltonian in variables (u,v).

We start with the fact that eigenstates of the type shown
Fig. 2~a! are exponentially localized in them space~channel
space! independently onn. Therefore, one can write,Cl

a(k)
5Cmn

a (k);exp$2b(m21)%, where b is some constant~of
the order of unity! determined by numerical data, and su
prisingly independent of energy. Therefore, these locali
eigenstates in the (u,v) variables have the following form:

c loc
a 5

C

g1/4
ei (x12pna /b)u (

m51

`

e2b(m21)sinS mpv
d D . ~9!

Here C is the normalization constant determined by t
orthonormality condition in curvilinear coordinate
*0

2p*0
1dudvAgc loc

a * c loc
a 51 ~see Ref.@6# for details!. As a

result, one obtains

uc loc
a ~y!u25

e2b21

4p

sin2~py/d!

coshb2cos~py/d!
. ~10!

The comparison of this expression with the numeri
data is shown in Fig. 3. One can see that in spite of a r
tively weak coupling of low channels (m;1) to all others,
the scattering from a rough surface strongly modifies
unperturbed states iny direction. One can speak about a kin
of ‘‘repulsion’’ of such eigenstates from the rough surface.
order to see how this repulsion depends on the degre
roughness, we have studied the form of the states withm
51 in dependence on the numberNT of harmonics in the
surface profile. The results shown in the inset reveal t
with an increase ofNT the position of the maximum of the
probability shifts away from the rough surface, and reac
its maximal value forNT→` ~practically, forNT5100).

d

FIG. 3. Projection of the eigenfuction profile of Fig. 2~a! onto
they coordinate~dots!, together with the analytical expression~10!
~white curve!. The valueb50.53 was numerically found by fitting
Cmn

a (k) to the exponential dependence exp$2b(m21)%. In the inset,
profiles~10! for strongly localized eigenstates withm51 in depen-
dence on the numberNT of harmonics are shown for~a! NT51,
b→`, ~b! NT550, b50.77, and~c! NT→`, b→0.48.
1-3
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The eigenstates with small values ofl H emerge in the
energy spectrum foranyenergy, thus resulting in a very slow
convergence to the limit of ergodicity. For example, the nu
ber of eigenstates originated fromm51 is Nm51(E)
5(2p/d)AE, therefore, the fraction of such eigenstates
given by

Nm51~E!

N~E!
5

2b

p2

1

AE
5A4b

pd

1

N~E!
, ~11!

whereN(E) is the total number of states with energy le
thanE. One should stress that in the energy spectrum th
states appear regularly due to the expression Eq.~7! with
m51 and differentn.

We would like to note that the type of localization in th
channel space we discuss here is different from that stu
for circular billiards with a rough surface~see, for example
Ref. @15#!. The point is that in our case classical diffusion
the transverse momentum space turns out to be very st
compared with quantum localization effects@16#. In contrast
to circular billiards, in our model with quasi-1D geometr
the effects of a strong localization~in the channel space! are
due to the existence of a continuous set of classical horiz
tal trajectories~‘‘bouncing balls’’! which do not touch the
rough boundary. As is shown in Ref.@17#, these trajectories
result in anomalous properties of conductance fluctuati
for open waveguides of finite length.

It should be stressed that for any high energy one can
eigenstates of a very different structure. To demonstrate
fact, in Fig. 4 we report two typical examples of strong
localized~in the coordinatex) eigenstates. These eigensta
are widely spanned in the unperturbed basis ofĤ0, with
large valuesl H@1, and they correspond to large values
m@1.

IV. CONCLUSIONS

To conclude with, we have analyzed the structure
eigenstates of a quasi-1D waveguide with a rough surfa
paying main attention to their localization properties in t
channel and coordinate representation. Different sets
strongly delocalized eigenstates~along the waveguide! have
been found, which have a quite specific form in the tra
s
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verse direction. We have developed the approach that all
one to explain this form, using the transformation to ne
canonical variables.

Another result is that eigenstates turn out to have v
different localization properties and this difference cannot
treated as a result of fluctuations only. Apart from the flu
tuations, there areregular effects which are due to a stron
influence of the geometry. Namely, it was found that t
eigenstates originated from small values ofm are strongly
localized~delocalized! in the channel~coordinate! represen-
tation, and those associated with largem are strongly delo-
calized~localized! ones. This effect seems to be directly r
lated to that found in Refs.@5,18# for open finite waveguides
where it was shown that characteristic scales for scatte
are different for different channels. Thus, it seems questi
able whether standard statistical approaches based on
pletely random mathematical models, can adequately
scribe properties of eigenstates.

ACKNOWLEDGMENT

This work was supported by CONACyT~Mexico! Grant
No. 34668-E.

FIG. 4. Two eigenstates that are strongly localized inx direc-
tion; ~a! a5390 and~b! a5407. The model parameters are th
same as in Fig. 1.
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