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Ballistic localization in quasi-one-dimensional waveguides with rough surfaces
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Structure of eigenstates in a periodic quasi-one-dimensional waveguide with a rough surface is studied both
analytically and numerically. We have found a large number of “regular” eigenstates for any high energy. They
result in a very slow convergence to the classical limit in which the eigenstates are expected to be completely
ergodic. As a consequence, localization properties of eigenstates originated from unperturbed transverse chan-
nels with low indexes are strongly localizédelocalized in the momentunicoordinaté representation. These
eigenstates were found to have a quite unexpected form that manifests a kind of “repulsion” from the rough
surface. Our results indicate that standard statistical approaches for ballistic localization in such waveguides
seem to be inappropriate.
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[. INTRODUCTION the lowery=0 and uppely=d+ag(x) surfaces with&(x
+b)=¢(x) and(£&(x))=0. Here the angular brackets stand
In the past decade much attention has been paid to statifer the average over one peribdor, in the case of a random
tical properties of eigenstates of closed disordered systemprofile, over different realizations @f(x)].
As a result, till date practically everything is known for  Our main interest is in the study of the structure of eigen-
quasi-one-dimensiondtjuasi-1D systems with “bulk disor- states of this billiard which depends on their energy and
der.” The success is mainly related to the developments ofmodel parameters. For this we use the technique that trans-

the non-linearc model (see, e.g., Refl1] and references forms the HamiltoniarH = (1/2m,) (P2+ |5§) for a free par-
therein. One of the most important results is that the statis+jcle inside the billiard with the above boundaries to a new
tical properties of such systems are essentially determined hyamiltonian which incorporates surface scattering effects
one characteristic length only, known as the localizationnto effective interaction potential. This can be achieved by
length of eigenstates. This fact is entirely due to a stronghe transformation to new canonical coordinates:x, v
mixing between transverse channels resulting fbarik scat- =y/[1+ e&(x)] with e=a/d. As a result, the boundary con-

tering and leading to a diffusive character of transport. ditions for new wave function are triviatb (u,v)=0 atv
A much more difficult situation was found to occur for the — g andy =d (see details in Ref6]).

models withsurface scatteringvhen the disorder is due toa | the new variables the Hamiltonian gé6j
surface roughness. In quasi-1D geometry such models are

closely related to optical/microwave waveguides and have R K2 [ g2 P P 9

many physical applications in different fiel@i8]. The main H=- 5 _z+h1_2+h2ﬁ+h3(;_ , (D
problem in the rigorous treatment of this kind of systems is Me | ou Ju Haov v

in the ballistic character of the scattering which has weaker h

statistical properties in comparison with diffusive :scattering.W ere

Progress in this direction is related to recent developments of 1+ €222 e,

the “ballistic sigma model,” however, the problem is still far
from being solvedsee discussion and references in R&f).
As was recently shown in a number of numerical studies

Yo(1ves)?’ P ltef

[4,5], the transport in quasi-1D waveguides with rough sur- —evé,, 2veE
faces is highly nonisotropic in channel space. Specifically, hs= R + 2 ()
the transport through such waveguides strongly depends on (1+€f)

the incident angle of incoming wave. In particular, the trans-
mission coefficient smoothly decreases with an increase and §u=o’!§/&u,_§uu=a2§/0u_2. L .
the angle, since characteristic lengths for backscattering are One can write the Hamiltonian in the following form,
different for different channelgs].

To understand generic features of surface disordered H=H%+V(uu,P,,P,), A%=

(P2+P2), (3

quasi-1D systems, in this paper we perform a detailed study 2me
of the structure of eigenstates of a 2D quantum billierd . . ) i
waveguide. where P, and P, are the new canonical momenta. In this

way, the “unperturbed” Hamiltoniari® describes free mo-
tion of two “particles” inside a billiard with flat boundaries,
y=0,y=d, andV stands for an effective “interaction” be-
We consider billiards which are periodic in the longitudi- tween the “particles.” Such a representation turns out to be
nal coordinatex, and with Dirichlet boundary conditions on very convenient for the study of chaotic properties of our

Il. THE MODEL
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model, since one can use the tools and concepts developedrnmatrix is L= (2Nyax+ 1)Mnmax=4030. Since the statistical

the theory of interacting particlesee Ref[7], and refer-
ences therein

This model has been thoroughly studied in REs8—12
for the specific cas&(x)=cos(2mx/b). The main interest
was in the properties of energy spectr{i6y10], and in the

properties of eigenstates do not depend on a specific value of
the Bloch indexy inside the band10], we fix it to x
=0.17/b. Note that due to the so-called antiunitary symme-
try [13] the level spacing statistics for this model corre-
sponds to that of a Gaussian orthogonal ensenBIBE)

guantum-classical correspondence for the shape of eigelisee also examples in Ré¢fl4]).

functions(SEP and local density of statdeDOS) [8,11]. In

One natural representation of the Hamiltonian matrix

particular, it was shown that for highly excited states theH|,|'(X)=<|||:|||'>X is the so-called “channel representa-
global properties of the SEF and LDOS in the quantumon” for which one fixes the values ai starting from the

model(3) are similar to those described by the equations ofgwest onen=—

Nmax. With the run ovemn for eachn. In

motion for a classical particle moving inside the billiard. On thjs way the matrix has a block structure that manifests pe-
the other hand, quite strong quantum effects have been reyjiarities of the interaction between different channels
vealed for individual eigenstates in a deep semiclassical respecified by the indexn. For our purpose, however, to ana-

gion [11].
Below we address the case of a rough surface

2mkx
) : 4

Nt
§0=2, Akcos( 5
k=1

focusing on the properties of eigenstates. The surface is mo@T
eled by a large sum of harmonics with randomly distributed

amplitudesA, . With an increase oN; the degree of com-
plexity of £(x) increases, and for a largé;=100 the sur-
face can be treated as the random one.

Since the Hamiltoniari3) is periodic inu=x, the eigen-
states are Bloch states and the solution of the Sthger
equation can be written in the formg(u,v)
=exp(xu) ¢, (uv), with ¢, (u+27/b,v)=4¢,(u,v). Here
the Bloch wave vectoy/(E) is in the first Brillouin band
(= m/b=<y=<m/b). By expandinge(u,v) in the basis of
Ho, the ath eigenstate of energg®(x) can be written as

pruvi= 2 2 Coldhdun), 6

where

ei(x+2wn/b)usin( @)
ik

Xuv)=

(6)

71_1/29 1/4

The factorg=[1+ e&(u)]? arises from the orthonormality
condition in the curvilinear coordinatesl,p) (see details in
Ref. [6]).

In the “unperturbed” basis defined by, the matrix el-
ements of the “interaction’V(u,v,P,,P,) can be written
explicitly for any profile&(x) [11]. This fact is very useful in

lyze the properties of the eigenfunctions it is more conve-
nient to use the “energy representation” according to which
the unperturbed basis is ordered in increasing en&iy
=EP [11].

In what follows we mainly discuss periodic billiards with
weak roughness=a/d<1. However, all matrix elements
the Hamiltonian are computed according to exact analyti-
cal expressions. This is important because the contribution of
the “gradient” terms(which depend o, &,,) is strong for
N>1 and should be treated nonperturbatively.

IIl. ANALYSIS AND DISCUSSION

In order to characterize quantitatively the structure of
eigenfunctions we compute thentropy localization length
Iy, given by the expression,

I t=exp{— (H—Hgop)} ~2.08 exp— H}. (8)
Here H=—=|_,wlnw stands for the Shannon entropy of
an eigenstate in a given basis, dHd ¢ is the entropy of a
completely chaotic state characterized by Gaussian fluctua-
tions of the component§{* with the variance/w(*)=|C/*|?
=1/L [14]. Note that the value off, is proportional to the
localization lengtH;,,, , defined via thenverse participation
ratio 1, =3P~ with P=3/_(w")? [14]. Both quantities
give an estimate of the effective number of components in
exact(perturbed eigenstates.

In Fig. 1(a) the value ofl is plotted versus the index
for exact eigenstates ordered in eneEfy. This typical de-
pendence of on « is quite instructive. As one can antici-
pate, the number of principal components in the eigenstates
increases, in average, with energy. On the other hand, for any
large energyE® there are many eigenstates that have small

the study of the dependence of the properties of eigenstateslues ofl ;. For understanding the origin of these strongly

on the form of profile.
The eigenvalues dfi® are given by the expression

2
+

£0) #? mar\ 2
=— || y+— —
n,m(X) 2m, X n d

- ™

localizedeigenstatesin the unperturbed basj$)), it is con-
venient to consider the so-calléadividual LDOS [8]. This
quantity corresponds to the representation of an unperturbed
state|l) in the basis of exact stat¢s). Using the definition

(8) with H=—3=%_,w{In w®* where the sum now runs over

for a specific value ofl, one can characterize how many

In numerical simulations we have to make a cutoff forexact states contain specific unperturbed diate

the values ofm andn in the expansiorn5). Our main results
refer to the ranges £ mM=<M,.x and|n|<Npa, With N«

The data of Fig. (b) show that there is a large number of
unperturbed states that seem to be close to the exact ones

=32, Mhax= 62 for which the total size of the Hamiltonian (with | ;~1). The important point is that these states appear
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l FIG. 3. Projection of the eigenfuction profile of Fig(aR onto
they coordinate(dots, together with the analytical expressitiD)
FIG. 1. Localization measurk, for a rough surface wittN+  (white curve. The value=0.53 was numerically found by fitting
=100 for e=0.06 andd=b; (a) for exact eigenstatelsr), and(b)  C2 (k) to the exponential dependence gxg(m—1)}. In the inset,
for individual LDOSII). profiles (10) for strongly localized eigenstates with=1 in depen-
dence on the numbeX; of harmonics are shown fdia) N;=1,
in aregular way as a function of. The analysis shows that S—, (b) Ny=50, 8=0.77, and(c) Ny—c, —0.48.
exact eigenstatgs) with smallest values dfy are originated
from the unperturbed states with=1, see Eq(7). The data Below we give the explanation of this phenomenon by mak-
of Fig. 1(a) manifest that localized eigenstafes with small ~ ing use of the Hamiltonian in variablesi ).
values ofl,, can be classified by groups that are character- We start with the fact that eigenstates of the type shown in
ized by the values of=1,2,3 ... (for smallm) of those  Fig. 2a) are exponentially localized in tha space(channel
unperturbed statg$) to which they are “close.” space independently om. Therefore, one can writé*(k)
Two examples of such eigenstates are given in Fig. 2 ire Cp, (k) ~exp{—B(m—1)}, where B8 is some constantof
the coordinate representatior,y). It is quite unexpected the order of unity determined by numerical data, and sur-
that these eigenstates are very different from the unperturbgafisingly independent of energy. Therefore, these localized
ones even though they are quite close in energy representeigenstates in theu(v) variables have the following form:
tion. Figure 2a) shows that the rough boundary “pushes” .
(mrrv

oy a 2 . . .
the probability|y“(x,y)|* away from it, differing from the N :iei(xﬁwna/b)uz o Bn-Dgin
unperturbed mode witm=1 whose maximum is at the cen- loc g4 i~
tery=d/2. Similar repulsion occurs fan=2, see Fig. t).

). 9)

Here C is the normalization constant determined by the
orthonormality condition in curvilinear coordinates,

S fadudy gyt wit.=1 (see Ref[6] for detaily. As a
result, one obtains

e$-1  sird(wyld)
a 2__
Yo" =27~ Coshg—cog myrd)

(10

The comparison of this expression with the numerical
data is shown in Fig. 3. One can see that in spite of a rela-
tively weak coupling of low channelar(~1) to all others,
the scattering from a rough surface strongly modifies the
unperturbed states direction. One can speak about a kind
of “repulsion” of such eigenstates from the rough surface. In
order to see how this repulsion depends on the degree of
roughness, we have studied the form of the states with

FIG. 2. Examples of exact eigenstates that are strongly localized 1 in dependence on the numbk of harmonics in the
in energy representatiorig) @=968 (m=1) and (b) =976 (m  Surface profile. The results shown in the inset reveal that
=2). The probability|#“(x,y)|? is plotted for the parameters of With an increase oN; the position of the maximum of the
Fig. 1 (dark regions correspond to high probabilitBroken hori-  probability shifts away from the rough surface, and reaches
zontal curves show upper surface profiles. its maximal value foNt— o (practically, forN+=100).

N » o O N » 2]
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The eigenstates with small values lgf emerge in the
energy spectrum foainy energy, thus resulting in a very slow
convergence to the limit of ergodicity. For example, the num-
ber of eigenstates originated frorm=1 is N-4(E)
=(2w/d)\E, therefore, the fraction of such eigenstates is
given by

<

IO N P~ o O N B 2]

Nm-1(E) 2b 1 [ab 1
N(E) 2 JE Y mdN(E) (11)

whereN(E) is the total number of states with energy less
thanE. One should stress that in the energy spectrum these
states appear regularly due to the expression (Egwith
m=1 and differentn.

We would like to note that the type of localization in the X
channel space we discuss here is different from that studied
for circular billiards with a rough surfacesee, for example, FIG. 4. Two eigenstates that are strongly localized idirec-
Ref.[15]). The point is that in our case classical diffusion in tion; (a) «=390 and(b) a=407. The model parameters are the
the transverse momentum space turns out to be very strorggame as in Fig. 1.
compared with quantum localization effe¢is]. In contrast
to circular billiards, in our model with quasi-1D geometry, verse direction. We have developed the approach that allows
the effects of a strong localizatidin the channel spaga@re  one to explain this form, using the transformation to new
due to the existence of a continuous set of classical horizoreanonical variables.
tal trajectories(“bouncing balls”) which do not touch the Another result is that eigenstates turn out to have very
rough boundary. As is shown in Réfl7], these trajectories different localization properties and this difference cannot be
result in anomalous properties of conductance fluctuationgreated as a result of fluctuations only. Apart from the fluc-
for open waveguides of finite length. tuations, there aresgular effects which are due to a strong

It should be stressed that for any high energy one can finthfluence of the geometry. Namely, it was found that the
eigenstates of a very different structure. To demonstrate thisigenstates originated from small valuesmofare strongly
fact, in Fig. 4 we report two typical examples of strongly localized(delocalized in the channelcoordinaté represen-
localized(in the coordinatex) eigenstates. These eigenstatestation, and those associated with lamgeare strongly delo-

are widely spanned in the unperturbed basisHdf with  calized(localized ones. This effect seems to be directly re-
large valued ;>1, and they correspond to large values of lated to that found in Ref$5,18] for open finite waveguides,
ms>1. where it was shown that characteristic scales for scattering
are different for different channels. Thus, it seems question-
able whether standard statistical approaches based on com-
pletely random mathematical models, can adequately de-
To conclude with, we have analyzed the structure ofscribe properties of eigenstates.
eigenstates of a quasi-1D waveguide with a rough surface,
paying main attention to their localization properties in the
channel and coordinate representation. Different sets of
strongly delocalized eigenstatésong the waveguidehave This work was supported by CONACy{Mexico) Grant
been found, which have a quite specific form in the transNo. 34668-E.
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IV. CONCLUSIONS
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